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Introduction 

Memory retrieval tasks are commonly used in clinical settings to assess cognitive decline 

associated with aging. These tasks rely on an individual’s ability to recall information, a process 

that can be influenced by various factors, including acute anxiety. The interpretations of the 

outcome of these tests may be inaccurate if participants were experiencing acute anxiety at the 

time (Eysenck et al., 2007; Salthouse, 2012). This anxiety can stem from concerns about task 

performance or participant’s subjective perceptions of their abilities. To ensure the validity of 

these cognitive assessments, it is often important to measure the participant's state-anxiety or 

their current level of anxiety.  Although questionnaires are frequently used for this purpose, their 

reliability in capturing momentary anxiety is debatable, and their consistency can vary across 

repeated measures (Meissel & Salthouse, 2016). As such, employing physiological measures to 

assess acute anxiety may offer a more reliable approach to correct for this potentially 

confounding factor. 

Recently, development of methods to assess stress through indirect measures of the fight 

or flight response (i.e. sympathetic nervous system activity) have been developed using 

non-invasive measures at the wrist or in the fingers. Udhayakumar et al. (2023) demonstrated 

that stress responses can be monitored using photoplethysmography, a technique that detects 

changes in local blood oxygenation. They found that this method could identify the onset of 

physiological stresses (like when people place their hand in cold water) by using red light to 

track fluctuations in blood flow with each heartbeat. 
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Another device that uses infrared light to measure blood oxygen levels is a functional 

near-infrared spectroscopy device (fNIRS) by Artinis Medical Systems. This system is placed on 

the head and enables brain activity to be assessed. Moreover, the device also takes measures at 

very high rates (up to 75/s) enabling the pulsatile changes in blood oxygenation to be gathered. 

As such, it may be used to assess changes in the height of these pulses in the same manner as 

Udhayakumar et al. (2023), thus enabling stress levels to be monitored in addition to levels of 

brain activity. The fNIRS data typically obtained during studies that assess working memory may 

be rich in additional information that can be used to examine the relationships between stress and 

performance on working memory tasks in older adults. 

In this study, we explore the feasibility of using the Artinis Brite fNIRS system to 

simultaneously monitor anxiety, stress levels, and brain activity. fNIRS is utilized to measure 

blood oxygenation in the brain and scalp during two physiological stressors and two mental 

stress tasks. The resulting fNIRS data is analyzed using two metrics known for their sensitivity to 

sympathetic nervous system activation: total sample entropy and average sample entropy. 
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Methods 

Participants 

​ A total of eight participants, both male and female, aged between 19 and 30, were 

recruited for this study. Participants were recruited through social media (e.g., instagram and 

facebook), word of mouth, and posters placed on bulletin boards throughout TRU. The inclusion 

criteria required participants to be between 18 - 39 years old, have normal or corrected-to-normal 

vision, and be fluent in English. The exclusion criteria included individuals who had a history of 

cardiovascular disease (e.g. previous heart attack, or were currently being treated for high blood 

pressure or high cholesterol, previous stroke), had been diagnosed as having type 1 or 2 diabetes 

or metabolic syndrome, had respiratory illnesses like chronic obstructive pulmonary disease, or 

had a cognitive disorder that may be related to vascular dysfunction (e.g. dementias). All 

participants gave informed consent prior to the commencement of any experimental procedures. 

Compensation for their participation was provided in the form of Tim Hortons gift cards valued 

at twenty-five dollars.  

Procedure 

Upon arrival at the lab, participants were assured of confidentiality (each was assigned a 

random number, with no identifying information recorded apart from the consent form). They 

were provided with a consent form outlining the study's purpose, procedures (including the 

estimated time commitment), potential risks and benefits, compensation, confidentiality 

assurances, the right to withdraw, and contact information. Participants who chose not to consent 

or later withdrew from the study were still compensated. 
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Participants were then instructed to perform three maximal hand grips using a hand grip 

force measurement device connected to an ADInstruments PowerLab 26T. The data was 

recorded via LabChart software on a desktop computer. The first maximal hand grip was 

measured after 30 seconds, with the subsequent two grips separated by 30-second rest intervals. 

The maximal and minimal values (in mV) were then extracted from the data and used to set 

100% and 0% force, respectively, for a later experiment.  

ECG and ABP set-up 

After completing the maximal hand grips, participants were equipped with devices to 

monitor both heart rate and blood pressure. Heart rate was measured using an electrocardiogram 

(ECG). Three electrodes were positioned on the participant: one just below the right clavicle, one 

below the left clavicle, and one just above the left hip, using 3M-2560 Red Dot Multi-Purpose 

Monitoring Electrodes (1000/cs). The positive lead was connected to the hip electrode, the 

ground to the left clavicle, and the negative lead to the right clavicle (as seen in figure one). 

Figure 1. ECG set-up used in the study (not including the right leg).  
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Arterial blood pressure (ABP) was measured using a CNAP monitor (CNSystems, 

Austria) that included an arm cuff and appropriately sized finger cuffs (small, medium, or large). 

The arm cuff was applied first, followed by the finger cuffs, fitted according to the participant's 

finger size. Both blood pressure and heart rate data were recorded through Acqknowledge 

software on a laptop computer (Samsung series 7 Chronos) via the BIOPAC system.  

fNIRs set-up 

​ After participants were equipped with blood pressure and heart rate monitors, they were 

then fitted with the Artinis Brite fNIRS head cap. The neoprene cap was equipped with 10 

light-emitting optodes, which transmitted near-infrared light in the 650-950 nm range, and 12 

receivers that detected changes in light absorption, at a sampling rate of 75 Hz. The optodes were 

arranged in a 2 x 12 grid, spaced 3 cm apart, except for the short-separation channels, which 

were spaced 1.5 cm apart. This configuration created 24 recording channels which each 

continuously tracked fluctuations in the concentrations of oxygenated and deoxygenated 

hemoglobin.  

​ Once robust signals were ensured from the ECG, ABP, and fNIRS, participants 

completed two mental stress tasks and two physical stress tasks, with the order of tasks 

randomized for each participant. The randomization included both the sequence of the task 

categories—mental or physical—and the order of individual tasks within each category. 

Participants began in a seated position with their left hand, fitted with the ABP finger cuffs, 

resting on the arm of the chair, while their right hand remained free. They were asked to 

minimize movement and speech unless necessary to avoid disrupting any signals. A 10-minute 

rest period was conducted to establish baseline hemodynamic measurements, during which 
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participants remained seated in the chair without engaging in any activity. After the 10-minute 

rest period, participants undertook one of four tasks. Each mental stress task lasted five minutes, 

while the physical stress tasks were three minutes in duration. Upon completing a task, 

participants were instructed to remain very still for an additional three-minute period, which was 

crucial for data analysis. After the post-task period, participants were permitted to relax further, 

while continuing to minimize movement and speech as much as possible. Following each task, a 

10-minute rest period was mandated before the start of the subsequent task. Upon completing 

one category of tasks (either mental or physical), participants were provided with an opportunity 

to rest before proceeding to the next category. 

 

Mental Stress Tasks 

​ The two mental stress tasks included an unsolvable anagram and a color shape task, both 

derived from the millisecond test library within the Inquisit 5 software. Each task was presented 

to participants on a laptop (MacBook Air 2020, 13”, 2560 x 1600 resolution), and they were 

instructed to only use their free hand. Both tasks were limited to a duration of five minutes, 

regardless of the participants progress, and including the practice trial.  

​ The unsolvable anagrams task involved presenting participants with a series of scrambled 

letters (see figure two) that could and could not be arranged into meaningful words, at random 

intervals, within a thirty second time limit. The practice trial consisted of five solvable anagrams. 

Following the practice trial, participants were prompted with a message informing them they had 

to unscramble twenty-five letter sets into meaningful words and that they would pass if they 

solved at least eight of the twenty-five words or fail if they solved seven or fewer. Unbeknownst 
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to the participants, not all the scrambled letter combinations could form meaningful words. 

During the debriefing session following the experiment, participants were informed of this. 

Figure 2. An example of a scrambled letter combination presented to participants, who had thirty 

seconds to solve it before the screen switched to the next anagram. 

The Color Shape Task involved presenting participants with shapes that varied in color 

and form (figure three). Each shape and color was associated with a specific key on the laptop: 

the key 'A' corresponded to a circle and the color red, while 'L' corresponded to a triangle and the 

color green. Participants were required to press the designated key based on specific rules that 

varied throughout the task. 

During the initial practice block, participants were shown shapes without color and 

instructed to identify the shape. In the subsequent practice block, they were presented with 

colored squares and asked to identify the color. In the post-practice block one, participants were 

shown shapes (circle or triangle) or colored squares and were instructed to identify either the 

shape when no color was present, or the color when it was present. In post-practice block two, 

participants were shown shapes superimposed on coloured squares and asked to identify the 

color when it was red or the shape if it was green. The blocks became increasingly difficult as 

they progressed however, most participants only made it to post-practice block two with the 
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five-minute time limit. Consistent with the unsolvable anagrams task, participants were 

permitted to use only their free hand.  

Figure 3. Examples of images presented in the color-shape task. In the upper left (a), one of 

the two shapes from practice block one is depicted. The upper right (b) illustrates one of the two 

colors featured in practice block two. The lower left (c) presents two instances requiring 

participants to choose between shape or color in post-practice block one. Finally, the lower right 

(d) displays an example of a superimposed image from post-practice block two, where the 

correct answer is red. 

Physical Stress Tasks 

​ The physical stress tasks consisted of a prolonged handgrip test and a cold pressor test, 

each lasting three minutes. For the prolonged handgrip test, an MLT004/ST Grip Force 

Transducer connected to a PowerLab system (ADInstruments, New Zealand) was utilized. 

Participants were seated with the transducer in their dominant hand, facing a desktop computer 

displaying the lab chart output. They were instructed to maintain a grip force at 20% of their 
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maximal handgrip strength, which was determined at the start of the experiment, for the duration 

of three minutes. The exerted percentage and a three-minute timer were visible on the computer 

screen. Upon completion, participants were asked to release the transducer and remain as still as 

possible while the researcher removed the device from their hand. 

​ The cold pressor test involved the participant submerging their hand in water maintained 

at a temperature of 3-5°C for three minutes (Silverthorn & Michael, 2013). A four-quart stainless 

steel mixing bowl was filled to approximately three-quarters capacity with room-temperature 

water, and ice was added until the water temperature reached the desired range, as measured with 

a digital thermometer. The participant remained seated and placed their free hand into the bowl 

positioned beside them. To prevent the formation of a thermal layer, the researcher continuously 

stirred the water. At the end of the three-minute period, the researcher removed the participant’s 

hand and gently dried it with a paper towel to minimize participant movement.  

Analysis 

ECG Data 

​ The ECG intervals for each participant were extracted from AcqKnowledge and exported 

into an Excel spreadsheet. The spreadsheet contained all relevant ECG parameters, including the 

R-R interval. For each participant and each of the four tasks, the mean R-R interval was 

calculated for the pre-task rest period, the first, second, and third minutes of the task, and the 

post-task recovery period (labeled as "pre," "post 0-1," "post 1-2," "post 2-3," and "recovery," 

respectively). The mean R-R intervals for the pre and recovery periods were calculated from 30 

seconds of data, while the mean R-R intervals for the remaining periods were derived from 60 
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seconds of data. Heart rate was then calculated for each period from the mean R-R intervals by 

dividing sixty by the R-R interval, expressed in seconds.  

​ The heart rate data was then converted to a text file and exported into Jeffrey's Amazing 

Statistics Program (JASP) where it was analyzed by a repeated measures analysis of variance.  

ABP Data 

​ Arterial blood pressure data for each participant was analyzed using AcqKnowledge 

software. Consistent with the ECG data analysis, the mean arterial pressure (MAP) was 

calculated for each event of every task for each participant across the following time periods: 

pre-task rest, the first, second, and third minutes of the task, and the post-task recovery. The 

calculation of MAP values adhered to the same time intervals used for determining mean R-R 

intervals from the ECG data. MAP values were obtained by highlighting the signal within the 

specified time frames. The MAP data was then converted to a text file and exported into Jeffrey's 

Amazing Statistics Program (JASP) where it was analyzed by a repeated measures analysis of 

variance.  
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Results 

Mean HR 

Figure 4. The graph shows the mean heart rate (HR) in beats per minute (bpm) across different 

time points during the Handgrip task for each participant. The x-axis represents time points in 

seconds (Pre, Post0-1, Post1-2, Post2-3, and Recovery), and the y-axis shows HR values ranging 

from 20 to 120 bpm. The general trend of this graph shows that HR starts at a baseline level 

during the pre phase. It then increases progressively through the post phases, reaching a peak at 

post2-3, indicating the highest HR during the most strenuous part of the task. Finally, the HR 

decreases during the Recovery phase, approaching baseline values again. 
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Figure 5.  The graph shows the mean heart rate (HR) in beats per minute (bpm) across different 

time points during the Colour-Shape task for each participant. The x-axis represents time points 

in seconds (Pre, Post0-1, Post1-2, Post2-3, and Recovery), and the y-axis shows HR values 

ranging from 20 to 120 bpm. The general trend of the graph shows that HR increases moderately 

from the pre phase through the post phases, with a less pronounced peak compared to the other 

tasks. This suggests a milder cardiovascular response to this task. The recovery phase shows a 

gradual return towards the baseline HR. 
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Figure 6. The graph shows the mean heart rate (HR) in beats per minute (bpm) across different 

time points during the Anagram task for each participant. The x-axis represents time points in 

seconds (Pre, Post0-1, Post1-2, Post2-3, and Recovery), and the y-axis shows HR values ranging 

from 20 to 120 bpm. The general trend of this graph shows that HR increases slightly during the 

post phases compared to the pre phase, indicating a mild increase in cardiovascular response. 

The HR drops back towards baseline during the recovery phase, but the changes are less 

noticeable compared to other tasks.  
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Figure 7. The graph shows the mean heart rate (HR) in beats per minute (bpm) across different 

time points during the Cold Pressor task for each participant. The x-axis represents time points in 

seconds (Pre, Post0-1, Post1-2, Post2-3, and Recovery), and the y-axis shows HR values ranging 

from 20 to 120 bpm. The general trend for this graph shows that HR increases steadily from the 

pre phase to the post phases, with a significant rise at post2-3. During the recovery phase, the HR 

drops but may remain slightly elevated compared to the pre phase, indicating a slower return to 

baseline. 
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Mean Arterial Blood Pressure 

Figure 8. The graph shows the mean arterial pressure (MAP) in mmHg across different time 

points during the Handgrip task. The x-axis represents time points (Pre, Post0-1, Post1-2, 

Post2-3, and Recovery) in seconds, and the y-axis shows MAP values ranging from 60 to 160 

mmHg. The general trend for this graph shows a slight increase in MAP from pre to post0–1, 

indicating a mild initial cardiovascular response. MAP continues to rise, peaking at post2–3. 

After reaching this peak, MAP decreases slightly during the recovery phase, but it does not fully 

return to baseline. The red asterisk indicates a significant change in MAP between post2-3 and 

recovery.  
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Figure 9. The graph shows the mean arterial pressure (MAP) in mmHg across different time 

points during the Cold Pressor task. The x-axis represents time points (Pre, Post0-1, Post1-2, 

Post2-3, and Recovery) in seconds, and the y-axis shows MAP values ranging from 60 to 160 

mmHg. The general trend for this graph shows that there is a slight increase in MAP from 

baseline to post0-1. MAP continues to gradually rise and peaks at post2-3, showing the highest 

elevation during the task. Afterwards MAP begins to decline, approaching baseline levels, 

suggesting a return towards normal, but still slightly elevated compared to the initial pre phase, 

reflecting a gradual recovery process. The red asterisk represents a significant difference in MAP 

values between post0-1 and post2-3, the purple between post1-2 and recovery, and the blue 

between post2-3 and recovery.  
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Figure 10. The graph shows the mean arterial pressure (MAP) in mmHg across different time 

points during the Colour Shape task. The x-axis represents time points (Pre, Post0-1, Post1-2, 

Post2-3, and Recovery) in seconds, and the y-axis shows MAP values ranging from 60 to 160 

mmHg. The general trend for this graph shows that there is a slight increase in MAP from 

baseline to post0-1, showing a mild elevation during the task. Across the three post phases MAP 

values appear relatively stable, with no marked increase compared to earlier phases, indicating 

that the task might not elicit a strong cardiovascular response. During the recovery phase MAP 

decreases slightly, suggesting a return towards baseline but not a dramatic drop, indicating mild 

recovery. 
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Figure 11. The graph shows the mean arterial pressure (MAP) in mmHg across different time 

points during the Anagram task. The x-axis represents time points (Pre, Post0-1, Post1-2, 

Post2-3, and Recovery) in seconds, and the y-axis shows MAP values ranging from 60 to 160 

mmHg. The general trend of this graph shows a slight increase in MAP from pre to post0–1, 

indicating a mild cardiovascular response. However, across the three post phases MAP remains 

fairly stable, showing no significant elevation or drop across the task. During the recovery phase, 

MAP decreases slightly but stays close to the baseline level, suggesting a mild return towards 

resting values, with no strong recovery effect. Overall, the task appears to elicit only a minor 

response in MAP.  
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Discussion  

Mean HR 

As seen in figures four - seven, mean HR across each event within each task did not vary 

significantly. The most notable changes in the general trend of mean HR were seen in the colour 

shape task and in the hand grip task, however they were not significant changes. This may be due 

in part to the low sample size. With only eight participants, it is possible that any individual 

variation in HR response was amplified by the small sample size. Larger groups could reveal 

more significant differences by averaging out individual variability.  

Another potential factor for these findings are that males and females generally exhibit 

different cardiovascular responses to stress. Studies show that males tend to have a larger 

increase in heart rate, while females may exhibit more heart rate variability (HRV) and smaller 

increases in heart rate (potentially linked to menstrual cycle) (Ahmadi & Mandic, 2018). These 

differences in HR responses to stress can lead to increased variability in the overall data. If males 

tend to show higher HR increases in response to stress while females show a more moderate 

response with higher variability, the mean HR might fluctuate widely between participants, 

preventing the detection of a clear trend. We could potentially correct for this by increasing the 

sample size. A larger sample size allows for the identification of clearer trends by reducing the 

impact of outliers and individual variations in responses to stress. More data points would help 

smooth out fluctuations that could otherwise obscure significant findings.  
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Mean Arterial Pressure 

Figures 10 and 11 illustrate similar changes in MAP across all four events as those 

observed in the HR graphs. This trend may be attributed to the same factors influencing HR, 

such as sex-based differences in cardiovascular responses or the limited sample size. 

Additionally, it is possible that the stress tasks depicted in Figures 10 and 11 (color-shape task 

and anagram task) were not stressful enough to elicit a significant physiological response.  

In contrast, mean arterial pressure (MAP) demonstrated significant changes across events 

during both the cold pressor task (Figure 9) and the handgrip task (Figure 8). Specifically, a 

significant difference in MAP was observed between the post2-3 and recovery events in the 

handgrip task (p < .001). In the cold pressor task, three distinct significant differences in MAP 

were identified: between post0-1 and post2-3 (p < .001), post1-2 and recovery (p < .001), and 

post2-3 and recovery (p < .001). This suggests that the physical stressors were sufficient enough 

to elicit a physiological response.  
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Development of fNIRs analysis  

The above signal is an example of an oxyhemoglobin signal from an area of the brain for 

one participant. This portion of the UREAP is ongoing and will lead into Directed Studies course 

work. The goal is to identify all the peaks in the signal and then determine their prominence, as 

well as when each peak occurs. This is done using the code (see Appendix A for the Matlab 

code) based upon the work of Udhayakumar et al. (2023). First, we use some filtering techniques 

that remove non-physiological aspects of the signal. 
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After cleaning the signal, a function in Matlab is implemented that identifies peaks that 

are spaced out at reasonable intervals. In the case of humans, we expect the duration between 

peaks to vary between 0.5s-1.5s which corresponds to heart rates between 40-120 bpm.  

Once completed, the prominence of each peak and their occurrence is exported for further 

analyses based upon the Udhayakumar et al. (2023) manuscript. This next phase of the analysis 

involves first extracting from the dataset, time periods to analyze for average sample entropy. To 

do this a script in Matlab was developed that would first identify the times when each condition 

was occurring. This information is embedded within the fNIRS data and is referred to as the 
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stimulus. Thus, the script would extract the time of each stimulus and parse data before and after 

this period into variables to be assessed for average sample entropy. Afterwards the average 

sample entropy (Appendix B for the Matlab code) was determined for each parsed dataset, for 

example a 2-minute period during rest. 

At this stage, the Matlab code is complete and has been tested on one dataset with resting 

average sample entropy calculated. The next step upon completion of data collection is to apply 

these Matlab codes to the data and compare the average sample entropy across conditions and 

see whether we observe changes in average sample entropy that indicate sympathetic activation 

in our participants. 
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Future Steps for this Study 

​ This study will be continued as a directed studies for the fall 2024 semester, with plans to 

expand the participant pool. Increasing the sample size will provide stronger and more reliable 

data, allowing for more robust statistical analyses and generalizable conclusions.  In addition, 

with the completion of the data analysis code, a detailed analysis of the fNIRS signals will be 

conducted in MatLab.  The analysis will focus on the following steps: Analyzing the pulse of 

fNIRS datasets while under stress, cleaning the fNIRS data to extract peaks and troughs, 

calculating pulse amplitudes over time, incorporating Sample Entropy (SampEn) to assess 

changes in entropy over time and identifying rapid changes in SampEn to indicate shifts in 

sympathetic nervous system (SNS) activation. The next steps after this will involve examining 

data already obtained from young and older adults during a working memory task to assess 

whether it is possible to identify participants who experienced acute stress and anxiety. Dr. 

Gonzalez previously studied over 100 participants using fNIRS while they completed an N-back 

working memory task. Each of these participants was also assessed for state-anxiety levels using 

a questionnaire. A subset of the data will be analyzed from participants with varying levels of 

questionnaire-based state-anxiety. The analysis will focus on assessing relationships between 

fNIRS-measured anxiety and stress during the working memory task and determining if those 

who exhibited stress responses also have high state-anxiety levels on the questionnaire. 

​ The findings of this study will be presented at Thompson Rivers University’s 

undergraduate conference in collaboration with the Faculty of Science, as well as at the annual 

Canadian Society for Brain, Behaviour and Cognitive Science (CSBBCS) conference. 

Additionally, there are plans to potentially publish the results in an open access peer-reviewed 

journal, such as Experimental Physiology or Experimental Brain Research. 
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Appendix A 

MatLab Code - Pulse ID 

% Analyzing the pulse of fNIRS datasets while under stress 
% Cleaning of fNIRS data to extract peaks and troughs 
% Calculating the Pulse amplitudes over time 
% Incorporation of SampEn to assess changes in entropy over time 
% Identifying rapid changes in SampEn to indicate changes in SNS activation 
% Steps in code development 
% 1. Import the dataset using the Brain AnalyzIR toolkit from snirfs 
% 2. Convert to Hb and trim data set 
% 3. Possibly use the SNI to identify useful channels with structured noise 
%    which would be worth asessing 
% 4. Pre-processing steps will involve: 
%       a. caluculating the power spectrum of 
%           the signal, 
%       b. then identifying the maximal power within the spectrum of 
%           0.6-3Hz, which would ID HRs of between 36-180bpm 
%       c. Apply a centre median and centre moving average filter to the 
%           data with a window size of 0.2*Peak-to-peak duration 
 
% Load the .mat file 
data = load('nirs_example.mat'); 
hb_data = data.hb_data; 
 
% Sampling frequency (Hz) 
fs = 25; 
 
% Initialize structures to store results 
peak_amplitudes = struct; 
%relative_peak_amplitudes = struct; 
peak_locations = struct; 
peak_prominence = struct; 
%baselines_all = struct; 
 
% Process each column in hb_data 
for col = 1:size(hb_data, 2) 
    % Extract the current column data 
    data_col = hb_data(:, col); 
 
    % Step 1: Calculate the power spectrum 
    n = length(data_col); 
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    f = (0:n-1)*(fs/n); % Frequency vector 
 
    fft_col = fft(data_col); 
    power_spectrum = abs(fft_col).^2 / n; 
 
    % Step 2: Identify the maximal power within the spectrum of 0.5-3Hz 
    freq_range = find(f >= 0.5 & f <= 3); 
    [max_power, max_index] = max(power_spectrum(freq_range)); 
    max_freq = f(freq_range(max_index)); 
 
    % Calculate the peak-to-peak duration based on the identified HR frequency 
    peak_to_peak_duration = 1/max_freq; 
 
    % Step 3: Apply a central median and central moving average filter 
    window_size = round(0.2 * peak_to_peak_duration * fs); 
 
    filtered_median = medfilt1(data_col, window_size); 
    filtered_cma = movmean(filtered_median, window_size); 
    filtered_cma_invert = -1*filtered_cma; 
 
   % Step 4: Apply a 3rd order low pass Butterworth filter to create a 
%    % baseline signal to use to calculate relative peak heights 
%     [b, a] = butter(3, 0.5 * peak_to_peak_duration / (fs/2), 'low'); 
%     baseline_filtered = filtfilt(b, a, filtered_cma); 
 
    % Detect peaks and troughs in the filtered data 
    [peaks, locs, w, p] = findpeaks(filtered_cma,'Annotate', 'extents', 'MinPeakDistance', round(0.5 
* fs)); %adjust the 0.5 (120bpm) to ensure all peaks are identified 
    %[troughs, locst] = findpeaks(filtered_cma_invert, 'MinPeakDistance', round(0.5 *fs)); 
 
    % Calculate relative peak heights from the peak and trough data 
   % relative_peaks = zeros(size(peaks)); 
   % for i = 1:length(locs) % Find difference between the peak and trough of the local peak 
   %     relative_peaks(i) = peaks(i) - troughs(i); 
   % end 
 
    % Store results in structures 
    peak_amplitudes.(['col' num2str(col)]) = peaks; 
    %trough_amplitudes.(['col' num2str(col)]) = troughs; 
   % relative_peak_amplitudes.(['col' num2str(col)]) = relative_peaks; 
    peak_locations.(['col' num2str(col)]) = locs; 
    peak_prominence.(['col' num2str(col)]) = p; 
   % trough_locations.(['col' num2str(col)]) = locst; 
    % filtered_baseline(:,col) = baseline_filtered; 
    cma_filtered(:,col) = filtered_cma; 
    %cma_filtered_invert(:,col) = filtered_cma_invert; 
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    % baselines_all.(['col' num2str(col)]) = relative_baseline; 
end 
 
%Determine the peak amplitudes by taking the peak locations and comparing 
%them to the trough locations and if they are troughs are within 5 points 
%before the peak, then a peak amplitude is calculated and placed in a 
% %struct 
% i=1 
% for fieldNumber = 1:42 
%     fieldName = sprintf('col%d', fieldNumber);  % Generate the field name dynamically 
%     fieldValue = myStruct.(fieldName);  % Access the field value 
%     % Do something with fieldValue 
%     disp(['Value of ', fieldName, ': ', num2str(fieldValue)]); 
% end 
 
% % Display the relative peak amplitudes for the first column as an example 
% fprintf('Relative Peak Amplitudes for Column 1:\n'); 
% disp(relative_peak_amplitudes.col1); 
 
%Uncomment the following section to plot specific column peaks 
time = (0:length(data_col)-1) / fs; 
col_to_plot = 31; % Change this to plot a different column 
findpeaks(cma_filtered(:,col_to_plot),'Annotate', 'extents', 'MinPeakDistance', round(0.5 * 
fs),'MaxPeakWidth',(2 * fs)); 
figure; 
plot(time, cma_filtered(:, col_to_plot)); 
hold on; 
plot(peak_locations.(['col' num2str(col_to_plot)]) / fs, peak_amplitudes.(['col' 
num2str(col_to_plot)]), 'rv', 'MarkerFaceColor', 'r'); 
title(['Data with Detected Peaks for Column ' num2str(col_to_plot)]); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
grid on; 
 
%Uncomment the following section to plot specific column troughs 
time = (0:length(data_col)-1) / fs; 
col_to_plot = 19; % Change this to plot a different column 
figure; 
plot(time, cma_filtered(:, col_to_plot)); 
hold on; 
plot(peak_locations.(['col' num2str(col_to_plot)]) / fs, peak_amplitudes.(['col' 
num2str(col_to_plot)]), 'rv', 'MarkerFaceColor', 'r'); 
title(['Data with Detected Peaks for Column ' num2str(col_to_plot)]); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
grid on; 
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%Extract stimulus timings from the hb data set and place in a matrix 
 
for stim_times = zeros(4,length(hb)); i=1:length(hb) 
    temp = hb(i).stimulus.values{1,1}.onset; 
    stim_times(:,i) = temp; 
    clear temp 
end 
 
%Extract pulse related data (height, slope, from each Stim (25 beats prior to 40 beats 
%afterwards) 
 
%Calculate SampEn of the segment with a r= 0.15 *sd and a tolerance of m=2 
    saen = total_sample_entropy(2,0.15*std(cma_filtered(:,7)),cma_filtered(:,7)); 
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Appendix B 

MatLab Code - Sample Entropy 
 
%% A function to calculate the total and average sample entropy of a parsed signal 
function TotalSampEn = total_sample_entropy(x, m, r_values) 
    % x: input time series 
    % m: embedded dimension 
    % r_values: range of tolerance values (vector of r) 
 
    N = length(x);  % Length of the time series 
    TotalSampEn = 0;  % Initialize total entropy sum 
 
    % Loop over each r value in the range 
    for r = r_values 
        SampEn = sample_entropy(x, m, r);  % Compute SampEn for each r 
        TotalSampEn = TotalSampEn + SampEn;  % Sum up the SampEn values 
    end 
end 
 
function SampEn = sample_entropy(x, m, r) 
    % x: time series data 
    % m: embedded dimension 
    % r: tolerance value (e.g., r * std(x)) 
 
    N = length(x); 
    r = r * std(x);  % Tolerance based on the signal's standard deviation 
 
    % Create m-dimensional embedding vectors 
    Xm = zeros(N - m + 1, m); 
    for i = 1:N - m + 1 
        Xm(i, :) = x(i:i + m - 1); 
    end 
 
    % Count matches for m-dimensional vectors 
    Cm = zeros(N - m + 1, 1); 
    for i = 1:N - m + 1 
        for j = 1:N - m + 1 
            if i ~= j 
                dist = max(abs(Xm(i, :) - Xm(j, :))); 
                if dist < r 
                    Cm(i) = Cm(i) + 1; 
                end 
            end 
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        end 
    end 
    Cm = Cm / (N - m);  % Normalize the counts 
 
    % Create (m+1)-dimensional embedding vectors 
    Xm1 = zeros(N - m, m + 1); 
    for i = 1:N - m 
        Xm1(i, :) = x(i:i + m);  % Vector of length m+1 
    end 
 
    % Count matches for (m+1)-dimensional vectors 
    Cm1 = zeros(N - m, 1); 
    for i = 1:N - m 
        for j = 1:N - m 
            if i ~= j 
                dist = max(abs(Xm1(i, :) - Xm1(j, :))); 
                if dist < r 
                    Cm1(i) = Cm1(i) + 1; 
                end 
            end 
        end 
    end 
    Cm1 = Cm1 / (N - m - 1);  % Normalize the counts 
 
    % Compute Sample Entropy 
    SampEn = -log(sum(Cm1) / sum(Cm)); 
end 
 
 

 

 


